Rapid, experience-dependent changes in levels of synaptic zinc in primary somatosensory cortex of the adult mouse.

نویسندگان

  • Craig E Brown
  • Richard H Dyck
چکیده

Electrophysiological studies have established that the adult cerebral cortex undergoes immediate functional reorganizations after perturbations of the sensory periphery. These activity-dependent modifications are thought to be mediated via the rapid regulation of the synaptic strength of existing connections. Recent studies have implicated synaptic zinc as contributing to activity-dependent mechanisms of cortical plasticity, such as long-term potentiation and long-term depression, by virtue of its potent ability to modulate glutamatergic neurotransmission. To investigate the role of synaptic zinc in cortical plasticity, we examined changes in the barrel-specific distribution of zinc in axon terminals innervating the primary somatosensory cortex of adult mice at different time points after whisker plucking. In layer IV of normal adult mice, zinc staining in the barrel field was characterized by intense staining in inter-barrel septae and low levels of staining in barrel hollows. Within 3 hr, and up to 1 week after the removal of a row of whiskers, zinc staining increased significantly in barrel hollows corresponding to the plucked whiskers. With longer survival times, levels of zinc staining gradually declined in deprived barrel hollows, returning to normal levels by 2-3 weeks after whisker removal. Increased levels of zinc staining in deprived barrel hollows were highly, negatively correlated with the length of whiskers as they regrew. These results indicate that levels of synaptic zinc in the neocortex are rapidly regulated by changes in sensory experience and suggest that zinc may participate in the plastic changes that normally occur in the cortex on a moment-to-moment basis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of administration of histamine and its H1, H2, and H3 receptor antagonists into the primary somatosensory cortex on inflammatory pain in rats

  Objective(s): The present study investigated the effects of microinjection of histamine and histamine H1, H2, and H3 receptor antagonists, chlorpheniramine, ranitidine and thioperamide, respectively into the primary somatosensory cortex (PSC) on inflammatory pain.   Material and Methods: Two stainless steel guide canulas were bilaterally implanted into the PSC of anaesthetized rats. Inf...

متن کامل

Effects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats

Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex b...

متن کامل

Neuronal response properties of somatosensory cortex (layer IV) are modulated following experience dependent plasticity in c-fiber depleted rats

Previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by C-fibers. In this study, we examined the effect of C-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. Methods: In this study, exte...

متن کامل

Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity

Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...

متن کامل

Effect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex

Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 7  شماره 

صفحات  -

تاریخ انتشار 2002